Preprint: “Exploring ChatGPT for Next-Generation Information Retrieval: Opportunities and Challenges”
The preprint linked below was recently shared on arXiv.
Title
Exploring ChatGPT for Next-Generation Information Retrieval: Opportunities and Challenges
Authors
Yizheng Huang
York University
Jimmy X. Huang
York University
Source
via arXiv
DOI: 10.48550/arXiv.2402.11203
Abstract
The rapid advancement of artificial intelligence (AI) has highlighted ChatGPT as a pivotal technology in the field of information retrieval (IR). Distinguished from its predecessors, ChatGPT offers significant benefits that have attracted the attention of both the industry and academic communities. While some view ChatGPT as a groundbreaking innovation, others attribute its success to the effective integration of product development and market strategies. The emergence of ChatGPT, alongside GPT-4, marks a new phase in Generative AI, generating content that is distinct from training examples and exceeding the capabilities of the prior GPT-3 model by OpenAI. Unlike the traditional supervised learning approach in IR tasks, ChatGPT challenges existing paradigms, bringing forth new challenges and opportunities regarding text quality assurance, model bias, and efficiency. This paper seeks to examine the impact of ChatGPT on IR tasks and offer insights into its potential future developments.
Direct to Full Text Article
15 pages; PDF.
Filed under: Journal Articles, News
About Gary Price
Gary Price (gprice@gmail.com) is a librarian, writer, consultant, and frequent conference speaker based in the Washington D.C. metro area. He earned his MLIS degree from Wayne State University in Detroit. Price has won several awards including the SLA Innovations in Technology Award and Alumnus of the Year from the Wayne St. University Library and Information Science Program. From 2006-2009 he was Director of Online Information Services at Ask.com.