New Report: “United In Science: A Multi-Organization High-Level Compilation of Latest Climate Science Information”
From the World Meterological Organization (WMO):
Climate change has not stopped for COVID19. Greenhouse gas concentrations in the atmosphere are at record levels and continue to increase. Emissions are heading in the direction of pre-pandemic levels following a temporary decline caused by the lockdown and economic slowdown. The world is set to see its warmest five years on record – in a trend which is likely to continue – and is not on track to meet agreed targets to keep global temperature increase well below 2 °C or at 1.5 °C above pre-industrial levels.
This is according to a new multi-agency report from leading science organizations, United in Science 2020. It highlights the increasing and irreversible impacts of climate change, which affects glaciers, oceans, nature, economies and human living conditions and is often felt through water-related hazards like drought or flooding. It also documents how COVID-19 has impeded our ability to monitor these changes through the global observing system.
[Clip]
The United in Science 2020 report, the second in a series, is coordinated by the World Meteorological Organization (WMO), with input from the Global Carbon Project, the Intergovernmental Panel on Climate Change, the Intergovernmental Oceanographic Commission of UNESCO, the UN Environment Programme and the UK Met Office. It presents the very latest scientific data and findings related to climate change to inform global policy and action.
[Clip]
Key Findings
Greenhouse Gas Concentrations in the Atmosphere (World Meteorological Organization)
Atmospheric CO2 concentrations showed no signs of peaking and have continued to increase to new records. Benchmark stations in the WMO Global Atmosphere Watch (GAW) network reported CO2 concentrations above 410 parts per million (ppm) during the first half of 2020, with Mauna Loa (Hawaii) and Cape Grim (Tasmania) at 414.38 ppm and 410.04 ppm, respectively, in July 2020, up from 411.74 ppm and 407.83 ppm in July 2019.
Reductions in emissions of CO2 in 2020 will only slightly impact the rate of increase in the atmospheric concentrations, which are the result of past and current emissions, as well as the very long lifetime of CO2. Sustained reductions in emissions to net zero are necessary to stabilize climate change.
Global Fossil CO2 emissions (Global Carbon Project)
CO2 emissions in 2020 will fall by an estimated 4% to 7% in 2020 due to COVID-19 confinement policies. The exact decline will depend on the continued trajectory of the pandemic and government responses to address it.
During peak lockdown in early April 2020, the daily global fossil CO2 emissions dropped by an unprecedented 17% compared to 2019. Even so, emissions were still equivalent to 2006 levels, highlighting both the steep growth over the past 15 years and the continued dependence on fossil sources for energy.
By early June 2020, global daily fossil CO2 emissions had mostly returned to within 5% (1%–8% range) below 2019 levels, which reached a new record of 36.7 Gigatonnes (Gt) last year, 62% higher than at the start of climate change negotiations in 1990.
Global methane emissions from human activities have continued to increase over the past decade. Current emissions of both CO2 and methane are not compatible with emissions pathways consistent with the targets of the Paris Agreement.
Emissions Gap (UN Environment Programme)
Transformational action can no longer be postponed if the Paris Agreement targets are to be met.
The Emissions Gap Report 2019 showed that the cuts in global emissions required per year from 2020 to 2030 are close to 3% for a 2 °C target and more than 7% per year on average for the 1.5 °C goal of the Paris Agreement.
The Emissions Gap in 2030 is estimated at 12-15 Gigatonnes (Gt) CO2e to limit global warming to below 2 °C. For the 1.5 ° C goal, the gap is estimated at 29-32 Gt CO2e, roughly equivalent to the combined emissions of the six largest emitters.
It is still possible to bridge the emissions gap, but this will require urgent and concerted action by all countries and across all sectors. A substantial part of the short-term potential can be realized through scaling up existing, well-proven policies, for instance on renewables and energy efficiency, low carbon transportation means and a phase out of coal.
Looking beyond the 2030 timeframe, new technological solutions and gradual change in consumption patterns are needed at all levels. Both technically and economically feasible solutions already exist.
State of Global Climate (WMO and UK’s Met Office)
The average global temperature for 2016–2020 is expected to be the warmest on record, about 1.1 °C above 1850-1900, a reference period for temperature change since pre-industrial times and 0.24°C warmer than the global average temperature for 2011-2015.
In the five-year period 2020–2024, the chance of at least one year exceeding 1.5 °C above pre-industrial levels is 24%, with a very small chance (3%) of the five-year mean exceeding this level. It is likely (~70% chance) that one or more months during the next five years will be at least 1.5 °C warmer than pre-industrial levels.
In every year between 2016 and 2020, Arctic sea ice extent has been below average. 2016–2019 recorded a greater glacier mass loss than all other past five-year periods since 1950. The rate of global mean sea-level rise increased between 2011–2015 and 2016–2020.
Direct to Complete Summary/News Release
Direct to Full Text Report
Filed under: Associations and Organizations, Data Files, News

About Gary Price
Gary Price (gprice@gmail.com) is a librarian, writer, consultant, and frequent conference speaker based in the Washington D.C. metro area. He earned his MLIS degree from Wayne State University in Detroit. Price has won several awards including the SLA Innovations in Technology Award and Alumnus of the Year from the Wayne St. University Library and Information Science Program. From 2006-2009 he was Director of Online Information Services at Ask.com.