SUBSCRIBE
SUBSCRIBE
EXPLORE +
  • About infoDOCKET
  • Academic Libraries on LJ
  • Research on LJ
  • News on LJ
  • Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar
  • Libraries
    • Academic Libraries
    • Government Libraries
    • National Libraries
    • Public Libraries
  • Companies (Publishers/Vendors)
    • EBSCO
    • Elsevier
    • Ex Libris
    • Frontiers
    • Gale
    • PLOS
    • Scholastic
  • New Resources
    • Dashboards
    • Data Files
    • Digital Collections
    • Digital Preservation
    • Interactive Tools
    • Maps
    • Other
    • Podcasts
    • Productivity
  • New Research
    • Conference Presentations
    • Journal Articles
    • Lecture
    • New Issue
    • Reports
  • Topics
    • Archives & Special Collections
    • Associations & Organizations
    • Awards
    • Funding
    • Interviews
    • Jobs
    • Management & Leadership
    • News
    • Patrons & Users
    • Preservation
    • Profiles
    • Publishing
    • Roundup
    • Scholarly Communications
      • Open Access

September 5, 2011 by Gary Price

Research Paper: Search Engine Data a Useful Predictor of Stock Returns

September 5, 2011 by Gary Price

From a University of Kansas Story:

New research by a team of researchers at the KU School of Business demonstrates that online ticker searches – for example, “XOM” for Exxon Mobil – can predict abnormal stock returns and trading volumes during the subsequent week. The research also shows that highly volatile stocks will be more sensitive to online search intensity than less volatile stocks.

[Clip]

The research was conducted by Kissan Joseph, associate professor of marketing; Jide Wintoki, assistant professor of finance; and Zelin Zhang, doctoral candidate in marketing, all at the KU School of Business. Their results will appear in an upcoming issue of the International Journal of Forecasting.

“There’s growing evidence in various disciplines that online search data can predict behavior,” Joseph said. “We’ve demonstrated that search engine data – the kind you can easily retrieve from Google Insights for Search, for example – is a reliable predictor of stock returns and trading volumes, especially for volatile stocks whose true value is hard to gauge.”

Read the Complete Story

See Also: Here’s a Preprint of the Full Text Research Paper

Joseph, Kissan, Jide Wintoki, and Zelin Zhang (2011), “Forecasting Abnormal Stock Returns and Trading Volume Using Investor Sentiment: Evidence from Online Search,” Forthcoming, International Journal of Forecasting.

See Also: Google Insights for Search

Filed under: Data Files, Journal Articles, Resources

SHARE:

BusinessDatabasesInformation Retrieval/SearchOnline Research & ReferenceResearchWeb Search

About Gary Price

Gary Price (gprice@gmail.com) is a librarian, writer, consultant, and frequent conference speaker based in the Washington D.C. metro area. He earned his MLIS degree from Wayne State University in Detroit. Price has won several awards including the SLA Innovations in Technology Award and Alumnus of the Year from the Wayne St. University Library and Information Science Program. From 2006-2009 he was Director of Online Information Services at Ask.com.

ADVERTISEMENT

Archives

Job Zone

ADVERTISEMENT

Related Infodocket Posts

ADVERTISEMENT

FOLLOW US ON X

Tweets by infoDOCKET

ADVERTISEMENT

This coverage is free for all visitors. Your support makes this possible.

This coverage is free for all visitors. Your support makes this possible.

Primary Sidebar

  • News
  • Reviews+
  • Technology
  • Programs+
  • Design
  • Leadership
  • People
  • COVID-19
  • Advocacy
  • Opinion
  • INFOdocket
  • Job Zone

Reviews+

  • Booklists
  • Prepub Alert
  • Book Pulse
  • Media
  • Readers' Advisory
  • Self-Published Books
  • Review Submissions
  • Review for LJ

Awards

  • Library of the Year
  • Librarian of the Year
  • Movers & Shakers 2022
  • Paralibrarian of the Year
  • Best Small Library
  • Marketer of the Year
  • All Awards Guidelines
  • Community Impact Prize

Resources

  • LJ Index/Star Libraries
  • Research
  • White Papers / Case Studies

Events & PD

  • Online Courses
  • In-Person Events
  • Virtual Events
  • Webcasts
  • About Us
  • Contact Us
  • Advertise
  • Subscribe
  • Media Inquiries
  • Newsletter Sign Up
  • Submit Features/News
  • Data Privacy
  • Terms of Use
  • Terms of Sale
  • FAQs
  • Careers at MSI


© 2026 Library Journal. All rights reserved.


© 2022 Library Journal. All rights reserved.