SUBSCRIBE
SUBSCRIBE
EXPLORE +
  • About infoDOCKET
  • Academic Libraries on LJ
  • Research on LJ
  • News on LJ
  • Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar
  • Libraries
    • Academic Libraries
    • Government Libraries
    • National Libraries
    • Public Libraries
  • Companies (Publishers/Vendors)
    • EBSCO
    • Elsevier
    • Ex Libris
    • Frontiers
    • Gale
    • PLOS
    • Scholastic
  • New Resources
    • Dashboards
    • Data Files
    • Digital Collections
    • Digital Preservation
    • Interactive Tools
    • Maps
    • Other
    • Podcasts
    • Productivity
  • New Research
    • Conference Presentations
    • Journal Articles
    • Lecture
    • New Issue
    • Reports
  • Topics
    • Archives & Special Collections
    • Associations & Organizations
    • Awards
    • Funding
    • Interviews
    • Jobs
    • Management & Leadership
    • News
    • Patrons & Users
    • Preservation
    • Profiles
    • Publishing
    • Roundup
    • Scholarly Communications
      • Open Access

July 17, 2016 by Gary Price

Conference Paper: “Privacy Leakage through Innocent Content Sharing in Online Social Networks”

July 17, 2016 by Gary Price

The following full text conference paper was recently shared on arXiv.
Title
Privacy Leakage through Innocent Content Sharing in Online Social Networks
Authors
Maria Han Veiga
University of Zurich
Carsten Eickhoff
ETH Zurich
Source
via arXiv
Published in Proceedings of PrivacyPreserving IR 2016 Workshop (ACM SIGIR PIR ’16)
Pisa, Italy
June 2016
Abstract

The increased popularity and ubiquitous availability of online social networks and globalised Internet access have affected the way in which people share content. The information that users willingly disclose on these platforms can be used for various purposes, from building consumer models for advertising, to inferring personal, potentially invasive, information.
In this work, we use Twitter, Instagram and Foursquare data to convey the idea that the content shared by users, especially when aggregated across platforms, can potentially disclose more information than was originally intended.
We perform two case studies: First, we perform user de-anonymization by mimicking the scenario of finding the identity of a user making anonymous posts within a group of users. Empirical evaluation on a sample of real-world social network profiles suggests that cross-platform aggregation introduces significant performance gains in user identification.
In the second task, we show that it is possible to infer physical location visits of a user on the basis of shared Twitter and Instagram content. We present an informativeness scoring function which estimates the relevance and novelty of a shared piece of information with respect to an inference task. This measure is validated using an active learning framework which chooses the most informative content at each given point in time. Based on a large-scale data sample, we show that by doing this, we can attain an improved inference performance. In some cases this performance exceeds even the use of the user’s full timeline.

Direct to Full Text Article (8 pages; PDF)

Filed under: Conference Presentations, Data Files, Journal Articles, News, Patrons and Users, Profiles

SHARE:

About Gary Price

Gary Price (gprice@gmail.com) is a librarian, writer, consultant, and frequent conference speaker based in the Washington D.C. metro area. He earned his MLIS degree from Wayne State University in Detroit. Price has won several awards including the SLA Innovations in Technology Award and Alumnus of the Year from the Wayne St. University Library and Information Science Program. From 2006-2009 he was Director of Online Information Services at Ask.com.

ADVERTISEMENT

Archives

Job Zone

ADVERTISEMENT

Related Infodocket Posts

ADVERTISEMENT

FOLLOW US ON X

Tweets by infoDOCKET

ADVERTISEMENT

This coverage is free for all visitors. Your support makes this possible.

This coverage is free for all visitors. Your support makes this possible.

Primary Sidebar

  • News
  • Reviews+
  • Technology
  • Programs+
  • Design
  • Leadership
  • People
  • COVID-19
  • Advocacy
  • Opinion
  • INFOdocket
  • Job Zone

Reviews+

  • Booklists
  • Prepub Alert
  • Book Pulse
  • Media
  • Readers' Advisory
  • Self-Published Books
  • Review Submissions
  • Review for LJ

Awards

  • Library of the Year
  • Librarian of the Year
  • Movers & Shakers 2022
  • Paralibrarian of the Year
  • Best Small Library
  • Marketer of the Year
  • All Awards Guidelines
  • Community Impact Prize

Resources

  • LJ Index/Star Libraries
  • Research
  • White Papers / Case Studies

Events & PD

  • Online Courses
  • In-Person Events
  • Virtual Events
  • Webcasts
  • About Us
  • Contact Us
  • Advertise
  • Subscribe
  • Media Inquiries
  • Newsletter Sign Up
  • Submit Features/News
  • Data Privacy
  • Terms of Use
  • Terms of Sale
  • FAQs
  • Careers at MSI


© 2025 Library Journal. All rights reserved.


© 2022 Library Journal. All rights reserved.