Research Article: Predicting Searcher Frustration
Title: Predicting Searcher Frustration
Authors: Henry Feild, James Allan, Rosie Jones
Date: 2010
Source: The Center for Intelligent Information Retrieval (CIIR)
In: Proceedings of the 33rd Annual ACM SIGIR Conference (SIGIR 2010)
Abstract:
When search engine users have trouble finding information, they may become frustrated, possibly resulting in a bad experience (even if they are ultimately successful). In a user study in which participants were given difficult information seeking tasks, half of all queries submitted resulted in some degree of self-reported frustration. A third of all successful tasks involved at least one instance of frustration. By mod- eling searcher frustration, search engines can predict the cur- rent state of user frustration and decide when to intervene with alternative search strategies to prevent the user from becoming more frustrated, giving up, or switching to another search engine. We present several models to predict frustration using features extracted from query logs and physical sensors. We are able to predict frustration with a mean average precision of 66% from the physical sensors, and 87% from the query log features.
Direct to Full Text Article (8 pages; PDF)
See Also: Presentation About Article (41 Slides; PDF)
Filed under: Conference Presentations, Patrons and Users, Resources
About Gary Price
Gary Price (gprice@gmail.com) is a librarian, writer, consultant, and frequent conference speaker based in the Washington D.C. metro area. He earned his MLIS degree from Wayne State University in Detroit. Price has won several awards including the SLA Innovations in Technology Award and Alumnus of the Year from the Wayne St. University Library and Information Science Program. From 2006-2009 he was Director of Online Information Services at Ask.com.